Мы перевели и снабдили иллюстрациями очень хорошую и доступную лекцию об истории энергетики от автора James C. Williams для Franklin Institute.
Введение
Энергия играет основополагающую роль в формировании человеческих условий существования. Потребность людей в энергии — это необходимость для выживания, поэтому не удивительно, что производство и потребление энергии являются одними из наиболее важных направлений человеческой деятельности. Действительно, существует мнение, что энергетика – это ключ к развитию цивилизации, что эволюция человеческого общества зависит от преобразования энергии для использования человеком. Немногие люди ставят под сомнение давнее предположение, что уровень жизни и качество цивилизации пропорциональны количеству энергии, используемой обществом. Однако, с определённой степенью точности, большинство людей все же уверены в стойкости формулы: энергия = прогресс = цивилизация.
Широко распространенное убеждение, что энергия и цивилизации неразрывно связаны, безусловно, имеет историческую основу. На протяжении всей истории люди были сосредоточены на контроле запасов энергии и явлений, которые являются частью природы. На протяжении десятков тысяч лет, люди полагались исключительно на химическую (калорийную) энергию, полученную из пищи, которая производит механическую (кинетическую) работу мышц. Но благодаря человеческому разуму, люди были в состоянии открыть и преодолеть физические ограничения, налагаемые на свои собственные мускульные силы, используя инструменты и осваивая энергию за пределами их собственного тела.
Самые ранние инструменты использовались для охоты на животных, сбора съедобных растений, ловли рыбы и птицы, а также переработки и транспортировки пищевых продуктов. Большинство семейных структур, общественных групп, политических и экономических институтов, создаваемые в течение тысячи лет, были сосредоточены главным образом на добыче, переработке, обмене и реализации продуктов питания, а также ископаемых и органических источников энергии (дрова, торф, уголь), использующихся для отопления, приготовления пищи, освещения или для растопки печей и топок, используемых в плавке руды.
Огромный массив уникальной человеческой культуры впитывал в себя необходимость поиска основных энергетических ресурсов в широком диапазоне человеческой деятельности: ритуалов, праздников, табу, мифов, танцев, игр, религии, языка, искусства и войны – во всем, что олицетворяют культурные ценности человечества в их самых основных формах. Довольно просто, человеческое существование всегда находилось во власти вековой потребности энергии.
Эпоха энергии воды
До современной эпохи, люди полагались на силу своих мускулов, на силу домашних животных, например, лошадей и волов, и на силу воды и ветра. Люди использовали эти энергетические ресурсы, чтобы возделывать множество значимых территорий, от полей и пастбищ до горных выработок и лесных участков. Затем были построены города и транспортные маршруты древних цивилизаций. Технологии, использовавшие эти энергоносители знакомы всем нам: топоры, кирки, плуги, жгуты, вагонетки и телеги, водяные и ветряные мельницы и парусные корабли.
Европа, которая обладала большими площадями водно-энергетического потенциала, в частности, получала выгоду от использования энергии производимой путем перемещения воды. Вертикальное водяное колесо, изобретённое, возможно, за два века до рождества Христова, распространилось по всей Европе в течение нескольких сотен лет. К концу римской эпохи, водяные мельницы обеспечивали энергией помол зерна, производство ткани, выделку кожи, распиловку дерева, плавку и формовку железа, и выполняли множество других ранних промышленных процессов. Производительность увеличивалась, зависимость от человеческой и животной мышечной силы постепенно снижались, и места с хорошими водно-энергетическими ресурсами стали центрами экономической и промышленной деятельности.
Историк Терри Рейнольдс замечает, что рост использования энергии воды, явился центральным элементом в западной технологии. В средние века, инженеры-гидравлики устанавливают мельницы на лодках и мостах, и вместе с этим появляются плотины для аккумуляции энергии воды и направления её по каналам на колёса. В пятнадцатом веке большие фрезерные комплексы во Франции реально зависели только от энергии воды. Изобретение и распространение распределительного коленчатого валов, позволило применить энергию воды к задачам, которые требуют возвратно-поступательного движения (например, работа молота и дутьё кузнечных мехов), и произвели революцию в черной металлургии. Количество водяных мельниц в Европе неуклонно возрастает. Появляется все больше и больше водно-промышленных комплексов, таких как большие водяные хлопчатобумажных фабрики Уильям Струтта и Ричарда Окрайта, действовавшие в течение 1770-х годов в Англии.
Между тем, освоение энергии ветра для движения парусных судов позволило пересечь океанские просторы, открыв европейцам Америку. Колонисты привезли с собой водяные мельницы, которые распространились от Латинской Америки до Канады. К 1800 году граждане вновь созданных Соединенных Штатов импортировали текстильные английские фабрики, и в течении двух десятилетий экспансивного водно-энергетического развития промышленные города появились в штатах Лоуэлл, Массачусетс и других местах новой Англии. К тому времени промышленной революции, евро-американская промышленность зависела почти исключительно от энергии воды.
Эпоха пара
Современная эпоха началась с восемнадцатого века с внедрения паровой энергии на английских угольных шахтах Томаса Сейвери и Томаса Ньюкомена. Их паровые двигатели и двигатель Джеймса Ватта вытеснили географически зависимые водяные установки. Взаимоотношения в областях добычи угля, железной промышленности и паросиловых установок привело к достижениям в области паровой техники, и с 1800 годов паровые двигатели дополняли водяные колёса на английских текстильных фабриках. Предприниматели поняли, что сила пара преодолела географическую зависимость от энергии воды, что один паровой двигатель может работать на несколько заводов, в то время как водяные колеса были подвержены остановкам, вызванными засухой, наводнениями, и замерзанием рек. Хотя энергия воды по-прежнему являлась доминирующим энергоносителем для производства на протяжении большей части девятнадцатого века, особенно во Франции и Соединенных Штатах, паровая энергия в конечном счете, оказалась более гибкой и экономически эффективной.
В девятнадцатом веке, паровые двигатели существенно улучшились. Американские бизнесмены привезли паровые двигатели из Англии, и в 1840-х годах они начали успешно конкурировать с водяными колёсами. Филадельфийский изобретатель Оливер Эванс, известный в среде автоматизации производства муки с использованием энергии воды, запатентовал один из первых успешных паровых двигателей высокого давления. Его двигатель и другие по его образцу вскоре распространились на речных судах и железных дорогах, что ознаменовало транспортную революцию в Америке XIX века. В Филадельфии в 1876 году огромный паровой двигатель Корлисса возвышался над главным залом и обеспечивал сотни машин показываемых на выставке Centennial.
Паровой двигатель установил постоянную связь между ископаемыми энергетическими ресурсами и индустриализацией. В Англии и Европе использовали уголь, как топливо для паровых двигателей до 1800 года, а к середине девятнадцатого века уголь гор Аппалачи стал выгоднее дерева в восточной части Соединенных Штатов. На тихоокеанском побережье, производители и перевозчики продолжали использовать дерево, но предпочитали использовать уголь и импортировали его по высокой цене из таких далеких мест, как Австралия. Дефицит и высокая стоимость хорошего угля на побережье Тихого океана в сочетании с открытием нефти в южной Калифорнии привели к использованию нефти в качестве топлива для паровых двигателей, которая вытеснила уголь, как топливо в течение первой половины двадцатого столетия.
Эпоха электричества
Одна из основных технологических проблем в использовании энергии — это её передача. К концу восемнадцатого века, увлечение феноменом электричества захватывает множество людей. Производство электроэнергии с помощью первых батарей, затем на основе явления электромагнитной индукции, передача электроэнергии по медным проводам, и развитие электродвигателей в конечном счете произвели революцию в транспортировке энергии. К концу XIX века, ограниченное и зависимое прямое подключение мануфактурных машин от водяных, ветряных мельниц и паровых двигателей через приводные валы и ремни уступило место электрическому приводу, получающему энергию по проводам протянутым от удалённых гидроэлектростанций и паротурбинных установок. Форма и характер заводов в ХХ веке изменилась кардинально, так как машины с электроприводом можно было установить где угодно. Кроме того, электроэнергия вытеснила конные и паровые повозки троллейбусами. Так же электроэнергия заменила газ для наружного освещения, керосин для домашнего освещения, дрова и уголь в печах и обогревателях.
Томас Эдисон внёс важнейший вклад в развитие электричества. Как отмечается в исследованиях Института Франклина, инновационный подход Эдисона к изобретению и продвижению развития электрического освещения, плюс развитие производства и распределения, позволили системе заработать. В 1880 году его лампы накаливания сделали возможным широкое распространение, надежной, коммерческой системы внутреннего освещения, и его центральная электростанция на Pearl Street в Манхэттене стала образцом для систем выработки и распределения электроэнергии. Не менее важным Эдисон считал вклад ряда других исследователей электроэнергетических технологий, в том числе Фрэнка Спарга, который построил первый коммерчески успешный электрический трамвай в Ричмонде, штат Вирджиния в 1887 году и Никола Теслу, который разработал генератор переменного тока.
Система Эдисона основанная на постоянном токе стала начальным стандартом для систем производства и распределения электроэнергии, питания электрических железных дорог и промышленных двигателей, а также освещения. К сожалению, она не могла быть легко применена для передачи электроэнергии на большие расстояния что возможно при использовании переменного тока. Осуществляя конкуренцию с компанией Эдисона в области электроэнергетики, компания Вестингауза, использовала переменный ток, что сделало возможным развитие крупных генерирующей электростанций, расположеных на больших расстояниях от потребителей. Как и запоминающееся освоение Вестингаузом гидроэнергетики на Ниагарском водопаде с приминением многофазной системы Теслы, так и события по передаче электроэнергии на переменном токе от далеких энергетических объектов в Калифорнии, Сьерра-Невада до прибрежных городов Сан-Франциско и Лос-Анджелес, установили стандарты по дальнейшей передачи электроэнергии.
К началу двадцатого века, электричество стало излюбленным методом для передачи энергии, но применение его человеком зависит от многих ученых и техников, работающих вместе. Возможно, самым важным изобретением Эдисона была лаборатория промышленных исследований, и в начале двадцатого века исследовательская лаборатория General Electric выступила в качестве модели для развития науки и техники. Там постоянно исследуются возможности по улучшению применения электричества человеком. Среди исследователей можно выделить Уильяма Кулиджа. Его внедрение вольфрамовой нити для ламп накаливания Эдисона, а затем рентгеновской трубки принесли ему самое почетное место в рядах выдающихся учёных и инженеров двадцатого века.
Эпоха атомной энергетики
Так как в течение двадцатого века электроэнергия стала повсеместным явлением, использование энергетических ресурсов возросло неимоверно. Гидроэнергетика продолжала играть важную роль в современной энергетической системе, но доступные участки для неё иссякали. Инженеры постоянно улучшали паротурбинные установки, для наибольшей выработки электроэнергии из меньшего количества топлива. Так как размер и эффективность электростанций увеличились, стоимость электроэнергии резко снизилась, что стимулировало еще большее потребление электроэнергии. Ископаемые виды топлива во-первых уголь, во-вторых нефть, стали важнейшими ресурсами для производства электроэнергии.
К сожалению, в 1960-х годах, рост эффективности электростанций почти прекратился, стоимость электроэнергии стала расти. Кроме того, растущее загрязнение, сопровождающееся кислотными дождями и других негативными воздействиями на окружающую среду было результатом активного использования ископаемого топлива. Поиски альтернативы ископаемым видам топлива для выработки электроэнергии привели многих людей к атомной энергии.
Вернёмся обратно в девятнадцатый век. Исследования в области физики привели к открытию явления радиации. Наиболее значимые работы в этой области принадлежат Марии Складовской-Кюри, чьи исследования излучения соединений урана подготовили почву для последующих разработок в атомной структуре и внутренней энергии атома. Первые десятилетия двадцатого столетия ознаменованы рядом успешных открытий и исследований в этой области, особенно в Европе. Итальянский физик Энрико Ферми в университете Рима был одним из первых среди ученых, работающих в этой захватывающей области, а в 1930-х годах он сосредоточился на производстве искусственного радиоактивного излучения при бомбардировке атомов урана нейтронами.
Так как с подъемом нацистской Германии европейский мир становился все более и более нестабильным, на волне союза Германии с итальянскими фашистами и накала антисемитского движения, Ферми и другие физики-ядерщики стали покидать свои университеты и научно-исследовательские лаборатории для того, чтобы уехать в Северную Америку. Обстоятельства эмиграции Ферми были весьма примечательными, потому что он был удостоен Нобелевской премии в 1938 году и получил разрешение от фашистского правительства Италии поехать в Стокгольм, чтобы получить награду. Однако, вместо возвращения в Италию, он и его жена-еврейка, и дети отправились в Соединенные Штаты, где Ферми стал профессором Колумбийского университета в Нью-Йорке.
С началом второй мировой войны в 1940 году, Ферми и другие физики в Европе и Америке поняли, что атом урана расщепленный нейтроном приводит к самовоспроизводящейся цепной реакции расщепления атомов, что позволяет высвободить огромную энергию. Этот процесс, называемый ядерной реакцией, предполагал возможное военное применение, и Ферми и его коллеги из Колумбийского университета вместе с Альбертом Эйнштейном, убедили правительство США изучить эту идею. Между тем, в университете, Ферми стремится к получению управляемой ядерной цепной реакции деления. В 1942 году, когда президент Франклин Рузвельт санкционировал разработку «Проекта Манхэттен», работа Ферми была передислоцирована в Университет Чикаго, где в декабре того же года он и его команда получили первой контролируемую цепную ядерную реакцию.
Работы Ферми и других физиков-ядерщиков непосредственно привели к созданию атомной бомбы, которую Соединенные Штаты дважды использовали против Японии в 1945 году. По результатам Второй Мировой войны, Соединенные Штаты создали комиссию по атомной энергетике (AEC) для наблюдения за разработкой ядерного оружия, а также для использования наработок ядерной энергетики в мирных целях. В 1950-е комиссия приступила к сотрудничеству с энергетическими компаниями, такими как Pacific Gas и Энергетическая Компания Калифорнии для развития производства электроэнергии с использованием ядерной реакции.
Вскоре ядерная энергия стала одной из самых расхваливаемых решений энергетической проблемы. Промышленно развитые страны во всем мире строили электростанции для удовлетворения постоянно повышающегося спроса на электроэнергию, но и в ядерной энергетике не обошлось без недостатков. К концу 1970-х годов, сейсмическая безопасность стала достаточно важным вопросом для калифорнийцев, что повлекло за собой мораторий на строительство новых атомных электростанций, и катастрофа на атомной станции «Three Mile Island» в 1979 году в Пенсильвании возбудила противников атомной энергетики. Эти инциденты в сочетании с нерешенной проблемой захоронения радиоактивных ядерных отходов, а также с увеличение времени строительства эффективных и безопасных объектов положили конец дальнейшему развитию АЭС в Соединенных Штатах. В 1986 году авария на Чернобыльской АЭС в Украине и последующее распространение радиационного отравления, направила Италию, Германию и другие страны по пути к прекращению зависимости от ядерной энергетики. Хотя атомная энергиетика не исчезла и по-прежнему рассматривается многими людьми как одно из лучших решений для удовлетворения человеческих потребностей в энергии, использование других ресурсов, таких как энергия солнца, ветра и биомассы, выглядит также достаточно многообещающе.
Независимо от того, где люди находили энергию для поддержания своего общества и культуры, ясно, что человеческая жизнь всегда была во власти вековой потребности в энергии. Небольшая история развития энергетики, представленная здесь показывает торжество уникальной изобретательности, подчеркивает научные и технологические поиски человечества по использованию энергетических ресурсов. Представьте себе, если можете, что будет следующим шагом в энергетической истории человечества.
Перевод Василия Горбунова
Использованы иллюстрации с сайтов neo-energy.ru, historylib.org, nauvopr.ru
Если достаточно хорошо посмотреть на картинки выше, то можно заметить что человек с электричеством более ленив чем другие 🙂
Это уж точно)) Лень — двигатель прогресса.
Я бы добавил к энергии еще и такой аспект развития, как технология. Пока нет технологии — нельзя использовать новые энергии.